Tuesday, February 26, 2019

Metal Flux Synthesis of Various Intermetallics

Reviews

Books

  • D. Elwell, and H. J. Scheel, "Crystal Growth from High-Temperature Solutions", Academic Press, 1975.

Flux dependence

  • C. L. Huang et al., "Low-temperature properties of CeAu2Ge2 single crystals grown from Au-Ge and Sn flux", Phys. Rev. B 86, 214401 (2012).
  • Y. Arai et al., "Intrinsic anomalous Hall effect arising from antiferromagnetic structure revealed by high-quality NbMnP", arXiv:2403.05058 (2024).

Aluminum flux (Al)

  • AE3Al2Pn4 (AE = Ca, Sr, Ba, Eu; Pn = P, As): no description, decant at 750 deg., H. He et al., J. Solid State Chem. 188, 59 (2012).
  • BaFe2Al9, BaCo2Al9, SrCo2Al9: no detail, C. N. Kuo et al., PRB 110, 045128 (2024).
  • CaAl4: 14:86, decant at 660 deg., S. Xu et al., PRB 99, 115138 (2019).
  • Ce3Al11: 1:10, decant at 750 deg., A. Bendova et al., JPS Conf. Proc. 30, 011108 (2020).
  • CeZnAl3: 1:2:8, Q. Liu et al., Sci. China Phys. Mech. Astron. 61, 77411 (2018).
  • EuAl2Ge2: 1:20:2, decant at 700 deg., S. Pakhira et al., arXiv:2301.09613 (2023).
  • EuB6: EuB6(14mg):Al(1g), G. Beaudin et al., arXiv:2008.09140 (2020).
  • EuPdAl6: 1:2:20, decant at 700 deg., H. Suzuki et al., JPS Conf. Proc. 38, 011100 (2023).
  • EuRh2Al8, YbCo2Al8: 6:8:86, decant at 900 deg, M. He et al., PRMater. 7, 033401 (2023).
  • EuTAl4Si2 (T = Rh, Ir): EuTSi3:eutectic Al-Si = 1:8, A. Maurya et al., Inorg. Chem. 53, 1443 (2014).
  • GdBe13: 1:13:35, H. Hidaka et al., Phys. Rev. B 102, 174408 (2020).
  • Gd2CoAl4T2 (T = Si, Ge): 2:1:18:2 (typo?), decant at 750 deg., K. Huang et al., Fornt. Phys. 14, 23502 (2019).
  • GdNiAl4Ge2/LuNiAl4Ge2: 1:1:15:5, decant at 700 deg., K. Feng et al., PRMater. 7, 124409 (2023).
  • GdT2Al10 (T = Fe, Ru): no description, M. Sera et al., PRB 88, 100404(R) (2013), T. Matsumura et al., JPSJ 86, 094709 (2017).
  • LnCo2Al8 (Ln = La, Pr): 1.5:2:20, decant at 900 deg., J.-J. Xiao et al., J. Phys.: Condens. Matter 35, 295601 (2023).
  • Ln(Cu, Al)12, Ln(Cu, Ga)12 (Ln = Y, Ce, Pr, Sm, Gd-Er, and Yb): 1:9:20(Al), 1:5:20(Ga), decant at 720 deg.(Al), 673 deg.(Ga), Drake et al., J. Phys. Condenced Mater. 22, 066001 (2010).
  • Ln6M4Al43 (Ln = Gd, Yb; M = Cr Mo W): 6:4:80(Cr) or 1:2:50(W) or 1:2:50(Mo), decant at 800-700 deg., M. J. Kangas et al., J. Sol. Stat. Chem. 197, 523 (2013).
  • LnRe2Al10 (Ln = Nd, Ho-Lu): 1:2:22 or 1:1:18, decant at 850 deg.,  B. Fehrmann et al., Inorg. Chem. 38, 3344 (1999).
  • LnT2Al10 (Ln = Y, La-Nd, Sm, Gd-Dy; T = Mn, Re): 1:2:12-1:2:22, V. M. T. Thiede et al., Z. Naturforsch 53b, 673 (1998).
  • NdAlSi: 1:10:1, decant at 700 deg., J. Gaudet et al., Nat. Mater. (2021).
  • NdAlGe: 1:10:1, decant at 700 deg., H.-Y. Yang et al., arXiv:2301.04893 (2023).
  • NdAlGe: 1:20:2, decant at 700 deg., C. Dhital et al., arXiv:2302.05596 (2023).
  • RAlSi (R = Ce, Sm): 1:10:1, decant at 750 deg., arXiv:111.05235 (2021).
  • REAuAl4Ge2 (RE = Ce-Nd, Sm-Dy, Er-Yb): 1:1:10:5, X. Wu et al., J. Solid State. Chem. 178, 3233 (2005). We could not reproduce the synthesis of RE = Eu for the trigonal crystal.
  • RE(AuAl2)nAl2(AuxSi1-x)2 (RE = La-Gd, Yb): 1:1:10:5, S. E. Latturner et al., Inorg. Chem. 47, 2089 (2008).
  • REAuAl4Ge2 (RE = Gd, Tb): 1?:1:10:5, decant at 700 deg., K. Feng et al., arXiv:2205.14063 (2022).
  • R4T9Al24 (T = Pd, Pt): 1:1:18, V. M. T. Thiede et al., ZaaC 625, 1417 (1999).
  • Sm3Ni5Al19: 0.2:0.1:0.6, decant at 700 deg., U. Subbarao et al., J. Chem. Sci. 126, 1605 (2014).
  • YNi3Al9: 1:3:20, decant at 750 deg., I. Oshchapovsky et al., J. Sol. Stat. Chem. doi.org/10.1016/j.jssc.2023.123926.
  • Yb2Pt6X15 (X = Al, Ga): 1:3:30, decant at 750 deg., A. Rousuli et al., PRB 96, 045117 (2017).

Zinc flux (Zn)

  • EuZn11: 1:10, Y. Ameku et al., JPS Conf. Proc. 38, 011094 (2023).
  • EuZn2X2 (X = Si, Ge): 1:52:2 or using In3Zn2, Ga3Zn2 flux, decant at 500-850 deg, A. Grytsiv et al., J. Sol. Stat. Chem. 163, 37 (2002).
  • R2Co3Zn14 (R = Y, Gd): 8:12:80 or 6:11:83, decant at 850 deg., A. S. Sefat et al., JMMM 320, 1035 (2008).
  • Yb2Zn3Ge3.1: 1:21:2, A. Grytsiv et al., J Phys.: Condens. Mater 17, 385 (2005).

Gallium flux (Ga)

  • AEGa2Pn2 (AE = Ca, Sr): 1:5:2, decant at 500 deg., H. He et al., Eur. J. Inorg. Chem. 4025 (2011).
  • AE3Ga2P4 (AE = Ca, Sr): 3:25:5, decant at 500 deg., H. He et al., J. Solid State Chem. 188, 59 (2012).
  • BaGa4: 1:85, decant at 400 deg., H. Wang et al., PRB 104, 205119 (2021).
  • Ba2Ga5As5: 2:5:5, decant at 500 deg., H. He et al., Eur. J. Inorg. Chem. 4025 (2011).
  • CeCo2Ga8: decant at 630 deg., L. Wang et al., npjQM 2, 36 (2017).
  • CeGaSi, LaGaSi: 1:7:2, decant at 600 deg., J. Gong et al., PRB 109, 024434 (2024).
  • CePdGa6: 1:1.5:15, decant at 400 deg., H. Q. Ye et al., PRB 105, 014405 (2022).
  • Ce/T/Ga (T = Cu, Pd, Ag, Zn): 1:0.5:10, decant at 300, 750 deg., M. S. Uddin et al., Inorg. Chem. doi.org/10.1021/acs.inorgchem.4c00797 (2024).
  • Co3Ni3Ga8: 1:1:5, decant at 500 deg., JACS 145, 1433 (2023).
  • DyCoGa5: 1:1:40, decant at 500 deg., B. Song et al., PRB 109, 134429 (2024).
  • EuGa4: 1:9, A. Nakamura et al., JPSJ 82, 104703 (2013).
  • EuGa2Pn2 (Pn = P, As): 3:150:6, decant at 600 deg., 3:51:6, decant at 500 deg., A. M. Goforth et al., Chem. Mater. 21, 4480 (2009).
  • LaCuGa3, CeCuGa3: 1:1:128, decant at 400 deg., D. A. Joshi et al., PRB 86, 035144 (2012).
  • LnCuGa3 (Ln = La, Pr, Nd, Gd): 1:2:21, rapid cool from 1050 deg. to 750 deg, decant at 500 deg., R. Nagalakshmi et al., JMMM 386, 34 (2015).
  • LnGaSi (Ln = La, Ce): 1:7:2, decant at 600 deg., J. Gong et al., PRMater 109, 024434 (2024).
  • Ln2MGa12 (Ln = Ce, Pr, Nd, Sm; M = Ni, Cu): 1.5:1:15 or 2:1:20, decant at 300 deg., K. R. Thomas et al., J. Crystal Growth 312, 1098 (2010).
  • LnRu2Ga8 (Ln = La, Pr): 1.5:2:20, decant at 900 deg. (La), 750 deg. (Pr),  J.-J. Xiao et al., J. Phys.: Condens. Matter 35, 295601 (2023).
  • MNiSi3 (M = Sm, Y): no quantitative description, X. Z. Chen et al., Chem. Mater. 11, 75 (1999). 
  • Mn123Ga137: no description, decant at 720 deg., M. Bostrom et al., J. Alloys Comp. 314 154 (2001).
  • NdCuGa3: 10:15:75, decant at 620 deg., B. K. Rai et al., JMMM 589, 171515 (2024).
  • NdGaSi: 1:10:1, decant at 600 deg., A. Saraswati et al., arxiv:2409.06250 (2024).
  • R2CoGa8 (R = Er, Tm): 2:1:27, decant at 750 deg., D. A. Joshi et al., PRB 77, 174420 (2008).
  • RFe2Ga8 (R = La, Nd): 1:2:20, decant at 750 deg., C. Wang et al., PRB 103, 035107 (2021).
  • RE3Ga9Ge (RE = Y, Ce, Sm, Gd, Yb): 1:15:1, M. A. Zhuravleva et al., J. Solid State Chem. 173, 280 (2003).
  • RE(Ga1-xSix)2 (RE = Y, La-Nd, Sm, Gd-Yb, Lu): 1:2:7, decant at 500 deg., G. M. Darone et al., J. Solid State Chem. 201, 191 (2013).
  • RE4Mn2As5 (RE = La-Pr): 1:1:4:3, D. Tabassum et al., J. Alloys Comp. 636, 187 (2015).
  • RE2MGa9Ge2 (RE = Ce, Sm; M = Ni, Co): 2:1:3:30, decant at 250 deg., M. A. Zhuravleva et al., Inorg. Chem. 47, 9471 (2008).
  • R2Pt6Ga15 (R = La-Nd, Sm-Lu): decant at 300 deg., Y. Matsumoto et al., J. Phys.: Conf. Ser. 683, 012035 (2016).
  • SmCu4Ga8: 1:5:20, decant at 400 deg., J. Y. Cho et al., Inorg. Chem. 47, 2472 (2008).
  • SmPd2Ga2: 1:1:20, decant at 350 deg., W. M. Williams et al., Inorg. Chem. 42, 7315 (2003).
  • Tb2Ir3Ga9: 1:2:20, 500 deg., M. A. Khan et al., PRMater. 3, 114411 (2019).
  • YCo0.88Ga3Ge: 1.5:0.75:11.2:0.75, decant at 250 deg., D. L. Gray et al., Inorg. Chem. 47, 7243 (2008).

Germanium flux (Ge)

  • CeTiGe3: 4:1:19, decant at 900 deg., U. S. Kaluarachchi et al., PRB 97, 045139 (2018).
  • CeTiGe3, CeVGe3: 4:1:19, decant at M. Inamdar et al., J. Phys.: Condens. Matter 26, 326003 (2014).
  • CeTi1-xVxGe3: 4:1-x:x:19, decant at 860 deg., H. Jin et al., PRB 106, 075131 (2022).
  • CeVGe3: 4:1:19, decant at 860 deg., C. Chaffey et al., arXiv:2306.10166 (2023).
  • LaCrGe3: two-step from 18:12:70, decant at 950 deg. and 825 deg., M. Xu et al., arXiv:2303.02062 (2023).
  • NdCoGe3: 10:15:75, decant at 950 deg., B. K. Rai et al., PRB 103, 014426 (2021).
  • RNiGe3 (Y, Ce-Sm, Gd-Yb): 1:1.6:9, decant at 780 deg. (Ce, Yb), 850 deg. (Y, Pr, Nd, Sm), 900 deg. (Gd-Tm), E. D. Mun et al., JMMM 322, 3527 (2010).
  • R3T4Ge13-x (R = Lu, Y; T = Co, Rh Ir, Os): 2:3:25 or 1:1:20, decant at 820-960 deg., B. K. Rai et al., Chem. Mater. 27, 2488 (2015).
  • YbIr3Ge7: 10:15:75, decant at 960 deg., B. K. Rai et al., PRB 99, 121109(R) (2019).

Cadmium flux (Cd, mp. 321.1 deg., bp. 766.8 deg.)

  • RCd6 (R = Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu): 1:11, A. Mori et al., JPSJ 81, 024720 (2012).
  • YCd6: 7:93, decant at 500 deg., M. Cabrera-Baez et al., PRB 107, 144414 (2023).
  • Yb2CdSb2: 1:36:1, heat up to 700 deg and decant at 400 deg., S.-q. Xia et al., JACS 129, 4049 (2007).

Indium flux (In)

  • AIn2As2 (A = Ca, Sr, Ba): (Ca/Sr, P63/mmc) 1:25:2 or (Ba, P2/m) 3:25:4, decant at 500 deg., M. O. Ogunbunmi et al., Dalton Trans. 50, 9173 (2021).
  • AE3In2As4 (AE = Sr, Eu): 3:25:4, decant at 500 deg., A. B. Childs et al., J. Solid State Chem. 278 120889 (2019).
  • AELi2In2Ge2 (AE = Sr, Ba, Eu): 1:12:20:2, decant at 500 deg., Ovchinnikov et al., Inorg. Chem. 58, 7895 (2019).
  • BaIn4: 1:85, decant at 400 deg., H. Wang et al., PRB 104, 205119 (2021).
  • BaIr2In9: 1:0.5:15, decant at 650 deg., N. P. Calta et al., Inorg. Chem. 54, 8794 (2015).
  • Ca4InGe4: 4:10-15:4, decant at 500 deg., T.-S. You et al., Dalton Trans. 41, 12446 (2012).
  • CeMn2Ge2: 1:2:2:20, decant at 700 deg., L. Xu et al., PRB 105, 075108 (2022).
  • CePtIn4: 1:1:25, decant at 550 deg., J. Blawat et al., J. All. Com. 724, 581 (2017).
  • DyRh2Si2: 1:2:2:49, K. Kliemt et al., Phys. Rev. B 107, 224424 (2023).
  • ErIn3: 1:15, decant at 600 deg., Y. Chen et al., JPCM 36, 055801 (2024). 
  • EuAg4In8: 2:2.6:17, U. Subbarao et al., J. Sol. Stat. Chem. 226, 126 (2015).
  • Eu2AuGe3: 3:2:6:45, decant at 350 deg., C. P. Sebastian et al., Inorg. Chem. 49, 9574 (2010).
  • EuCu2Ge2, Eu3T2In9 (T = Cu, Ag): 0.2:0.28:2 (g), 0.3:0.37:0.14:1.5 (g), U. Subbarao et al., Inorg. Chem. 55, 9951 (2016).
  • EuCuIn4: 1.2:1:20, decant at 170 deg., A. Nakamura et al., JPS Conf. Proc. 38, 011099 (2023).
  • EuGe2: 1.2:1:40, S. Matsuda et al., JPS Conf. Proc. 29, 012003 (2020).
  • EuIn2: 3:17, decant at 480 deg., B. Kuthanazhi et al., PRB 109, 214401 (2024).
  • EuIn4: 1:9, decant at 700 deg., Phys. Rev. Mater. 8, 094409 (2024).
  • Eu3InAs3: 1:30:1, decant at 850 deg., Phys. Rev. Research 3, 043178 (2021).
  • EuIn2As2: 3:36:9, decant at 700 deg., A. M. Goforth et al., Inorg. Chem. 47, 11048 (2008).
  • EuInGe: 4:20:4, decant at 350 deg., U. Subbarao et al., Cryst. Growth&Design, 13, 1 (2013).
  • Eu3InP3: 14:551:11, decant at 850 deg., J. Jiang et al., Inorg. Chem. 44, 2189 (2005).
  • EuIr2In8: 2:1:30, decant at 550 deg., N. P. Calta et al., Inorg. Chem. 55, 3128 (2016).
  • EuIr4In2Ge4: 1:1:30:1, decant at 550 deg., N. P. Calta et al., Angew. Chem. Int. Ed. 54, 9186 (2015), R. Nakachi et al., JPSJ 93, 075001 (2024).
  • EuNiSi3: 1.2:1:3:20, decant 600 deg., JPS Conf. Proc. 38, 011095 (2023).
  • EuPtIn4: 1:1:25, decant at 350 deg., P. F. S. Rosa et al., JMMM 371, 5 (2014).
  • Eu2Pt3Si5: 3:2:6:30, S. Sarkar et al., J. Solid State Chem. 225, 181 (2015).
  • EuRhSi3: 1:1:3:19, decant at 500 deg., A. Maurya et al., J. Phys.: Condens. Matter 27, 366001 (2015).
  • EuTGe3 (T = Co, Ni, Rh, Pd, Ir, Pt): 1:1:3:20, decant at 550 deg., O. Bednarchuk et al., J. All. Com. 622, 432 (2015).
  • EuTIn4 (T = Ni, Pd): 1:1:15, decant at 600 deg., S. Ikeda et al., JPS Conf. Proc. 3, 014023 (2014).
  • GdRh2Si2: 4GdRh2Si2:96In, K. Kliemt et al., J. Cryst. Growth 419, 37 (2015).
  • LaAu2In4, CeAu2In4: 1:2:20, decant at 450 deg., M. Lyu et al., Chin. Phys. B 30, 087101 (2021).
  • LaMn2Ge2: 1:2:2:20, decant at 700 deg., Roychowdhury et al., Adv. Mater. 2305916 (2024).
  • LaPtGe2: D. E. Bugaris et al., Euro. J. Inorg. Chem. 2015, 2164 (2015).
  • LnT2X2 (Ln = lanthanides, T = Co, Ru, Rh, Ir, X = Si, P): K. Kliemt et al., Cryst. Res. Technol. 55, 1900116 (2020).
  • LuRuGe: 0.3771:0.2178:0.1565:1.7316 (g), decant at 500 deg., J.-K. Bao et al., Inorg. Chem. 60, 7593 (2021).
  • NdGaGe: 1:3:1:7, decant at 500 deg., D. Ram et al. JMMM 605, 172326 (2024).
  • GdIr2Si2: 1:2:2:49 (I-type); 1.1:0.9:0.9:24 (P-type), K. Kliemt et al., arXiv:2203.01790 (2022).
  • Gd4CrGe8: 3:2:6:30, decant at 350 deg., S. C. Peter et al., JACS 133, 13840 (2011).
  • NdMn2Ge2: 1:2:2:60, decant at 700 deg., X. Zheng et al., Appl. Phys. Lett. 118, 072402 (2021).
  • PrAu2In4: 1:2:20, decant at 350 deg., Z. Zhuang et al., PRB 110, 085108 (2024). 
  • RE2AuSi3 (RE = Eu, Yb): 3:2:6:30, S. Sarkar et al., Cryst. Eng. Comm. 15, 8006 (2013).
  • RAu2In4 (R = La, Ce): 1:2:23, decant at 300 deg., D. A. Joshi et al., J. Phys.: Conf. Ser. 200, 012074 (2021). 
  • RGaGe (R = La-Pr): 1:2:1:8, decant at 500 deg., D. Ram et al., Phys. Rev. B 108, 024428 (2023).
  • REAu2In4 (RE = La, Ce, Pr, Nd): 0.5:1:8, decant at 150 deg.? (not clear), J. R. Salvador et al., Inorg. Chem. 46, 6933 (2007).
  • RECrxGe2: (RE = Gd, Dy): 1:1:2:40, decant at 300 deg. H. Bie et al., J. Solid State Chem. 182, 122 (2009).
  • RE2InGe2 (RE = Sm, Gd, Tb, Dy, Ho, Yb): 2:11:2, decant at 500 deg., P. H. Tobash et al., Chem. Mater. 17, 5567 (2005).
  • Rb3In3.4Ge3.6: 1:20:1.3, A. F. Savvidou et al., Chem. Mater. doi.org/10.1021/acs.chemmater.0c03943.
  • beta-RENiGe2 (R = Dy-Lu): 1:1:2:10, decant at 300 deg., J. R. Salvador et al., Inorg. Chem. 43, 1403 (2004).
  • RNi2Ge2 (R = Y, La-Nd, Sm-Lu): S. L. Bud'ko et al., JMMM 205, 53 (1999).
  • RE4Ni2InGe4 (RE = Dy, Ho, Er, Tm): 3:1:10:2, J. R. Salvador et al., Inorg. Chem. 45, 7031 (2006).
  • RE2Ru3Ge5 (RE = La, Ce, Nd, Gd, Tb): 1.66:2.5:4.16:17, D. E. Bugaris et al., Inorg. Chem. 56, 14584 (2017).
  • RE2Ru3Ge5 (RE = Pr, Sm, Dy): 1.66:2.5:4.16mmol:2g, decant at 600 deg., D. E. Bugaris et al., J. Am. Chem. Soc. 139, 4130 (2017).
  • RE2Zn3Ge6 (RE = La-Nd): 2:3:6:20, J. R. Salvador et al., Inorg. Chem. 44, 8670 (2005).
  • SmCoIn5: 7.17:7.17:278.69, decant at 350 deg., D. W. Tam et al., arXiv:2307.13534 (2023).
  • SmMn2Ge2: 1:2:2:60, decant at 700 deg., M. Singh et al., PRMater. 8, 084201 (2024).
  • Y4RuGe8: 7:4:12:133, decant at 500 deg., J.-K. Bao et al., Chem. Mater. 33, 7569 (2021).
  • YbAu2In4, Yb2Au3In5: 1:3:15, 3:2:15, C. P. Sebastian et al., Inorg. Chem. 49, 10468 (2010).
  • Yb7Co4InGe12: 3:2:15:3, M. Chondroudi et al., Chem. Mater. 19, 4769 (2007).
  • Yb5Co4Ge10: 0.3:0.1:0.3:2 (g), U. Subbarao et al., Adv. Mater. Phys. Chem. 3, 54 (2013).
  • YbCuGa3: 0.3:0.14:1.5 (g), decant at 400 deg., U. Subbarao et al., Cryst. Growth&Design, 13, 405 (2013).
  • YbCu4Ga8: 0.1757:0.2581:0.5663 (g), U. Subarao et al., Inorg. Chem. 52, 1667 (2013).
  • Yb2CuGe6, Yb3Cu4Ge4: 3:2-3:6:45, decant at 350 deg., S. C. Peter et al., J. Alloys Cmpd. 589, 405 (2014).
  • YbCu6In6: 0.1:0.408:2.048 (g), decant at 450 deg., U. Subbarao et al., Inorg. Chem. 51, 5985 (2012).
  • Yb5Ga2Sb6: 0.3:2:0.4, U. Subbarao et al., Inorg. Chem. 52, 13289 (2013).
  • Yb6.6Ir6Sn16: 3:2:6:30, decant at 350 deg., S. C. Peter et al., Inorg. Chem. 53, 6615 (2014).
  • YbMn0.17Si1.88: 3:2:6:45, decant at 350 deg., S. C. Peter et al., Inorg. Chem. 52, 4747 (2013).
  • Yb5Ni4Ge10: 5:4:10:45, decant at 350 deg., S. C. Peter et al., Eur. J. Inorg. Chem. 2011, 3963 (2011).
  • Yb(Rh,Ir)2Si2: Al2O3 crucible in Ta tube, heated under Ar (flow?) upto 1600 deg., C. Krellner et al., Phil. Mag. 92, 2508 (2012).
  • Yb4TGe8 (T = Cr-Ni): 3:2:6:30, decant at 350 deg., S. C. Peter et al., JACS 133, 13840 (2011).

Tin flux (Sn)

  • AuSn4: 0.09:0.91, decant at 240 deg., D. Shen et al., Chem. Mater. 1, 56 (2020).
  • Ca4LiSn6: 2:1:5, decant at 500 deg., 
  • Ca9Li6+xSn13-x: 1:1:3, decant at 500 deg., 
  • Ca2Pt3Si5: 1:1:3:20, T. Takeuchi et al., J. Phys. Soc. Jpn. 78, 085001 (2009).
  • Ce4Fe3Ge10: 6:5:16:30, decant at 815 deg., Alexis Dominguez Montero et al., Inorg. Chem. (2024), doi.org/10.1021/acs.chemmater.4c01938
  • CePtSi3: CePtSi3(arc):Sn = 1:20, decant at RT, T. Kawai et al., JPSJ 76, 014710 (2007).
  • Ce3TiSb5: 2:1:5:20, decant at 650 deg., X. He et al., arXiv:2408.04438 (2024).
  • Ce3ZrSb5: 3:1:5:x, decant at 400 deg., K. Nakagawa et al., JPS Conf. Proc. 38, 011083 (2023).
  • CrSb: 1:1:15, decant at 400 deg., T. Urata et al., Phys. Rev. Mater. 8, 084412 (2024).
  • EuCd2P2: 1:2:2:20, decant at 550 deg., Z.-C. Wang et al., arXiv:2102.00204.
  • EuCuAs: 1:1:1:10, J. Tong et al., J. All. Com. 602, 26 (2014).
  • EuCuP, EuCuAs: 7EuCu(P,As):93Sn, decant at 500 deg., A. F. May et al., Phys. Rev. Mater. 7, 064406 (2023).
  • EuMnSb2: 1:1:2:10, decant at 600 deg., C. Yi et al., PRB 96, 205103 (2017).
  • Eu10Mn6Sb13: 10:6:13:30, A. P. Holm et al., Inorg. Chem. 42, 4660 (2003).
  • EuNi2P2: 1.2:2:2:20, Y. Hiranaka et al., JPSJ 82, 083708 (2013).
  • EuPtGe3: 1:1:3:19, decant at 500 deg., N. Kumar et al., J. Phys.: Condens. Matter 24, 036005 (2012).
  • EuPtSi3: 1:1:3:19, decant at 500 deg., N. Kumar et al., PRB 81, 144414 (2010).
  • EuSn2P2: 1.1:20:2, decant at 600 deg., X. Gui et al., arXiv:1903.03888.
  • Eu3Sn2P4: 3:30:4, decant at 600 deg., J. Blawat et al., J. Mater. Chem. C 7, 12650 (2019).
  • Eu11Cd6Sb12-xAsx (x = 0-12): 11:6:(12-x):x:30, decant at 600 deg., N. Kazem et al., Chem. Mater. 26, 1393 (2014).
  • EuZn2As2: 1:2:2:20, decant at 600 deg., J. Blawat et al., Adv. Quantum Tech. 5, 2200012 (2022).
  • EuZn2P2: 1:2:2:45, decant at 850 deg., T. Berry et al., Phys. Rev. B 106, 054420 (2022).
  • Eu2ZnSb2: 2:1:2:10, decant at 500 deg., Z. Du et al., J. Magn. Magn. Mater. in press (2024).
  • Eu11Zn4Sn2As12: 11:6:95:12, decant at 650 deg., K. P. Devlin et al., Chem. Mater. 30, 7067 (2018).
  • Eu3-dZnxSnyAs3: 2:1:20:2, decant at 600 deg., Y. Yang et al., J. Appl. Phys. 132, 043902 (2022).
  • HoMn6Ge6: 1:6:6:24, decant at 600 deg., A. Low et al., arXiv:2404.11414 (2024).
  • Ho5Pd4Sn12: Ho5Pd4Sn12:Sn = 1:10, decant at 137 deg.(?), H.-X. Liu et al., Inorg. Chem. doi.org/10.1021/acs.inorgchem.2c02047(2022).
  • HoPtSn: 1:1:25, decant at 400 deg., H.-X. Liu et al., Phys. Rev. Mater. 7, 074405 (2023).
  • α-IrSn4: 1:10, decant at 200 deg., R. Omura et al., JPS Conf. Proc. 30, 011018 (2020).
  • La3ZrSb5: 3.15:1:5:40, decant at 700 deg., J. F. Khoury et al., Adv. Mater. 36, 2404553 (2024).
  • LiFeAs: 1:1:1:10, decant at 500 deg., B. Lee et al., EPL 91, 67002 (2010).
  • LnB2X2 (B = Fe-Ni, X = P): 1:2:2:20, R. Marchand et al., J. Sol. Stat. Chem. 24, 351 (1978).
  • Ln2Co3Ge5 (Ln = Pr, Nd, and Sm): 3:2:7:52, decant at 815 deg.,Trent M. Kyrk et al., doi.org/10.1021/acs.inorgchem.1c01978 (2021).
  • beta-LnNiSb3 (Ln = La, Ce): 1:1:3:20, decant at 250 deg., E. L. Thomas et al., Inorg. Chem. 46, 3010 (2007).
  • LnNi(Sn,Sb)3 (Ln = Pr-Sm, Gd, Tb): 1:2:3:15, decant at 300 deg., D. P. Gautreaux et al., J. Solid State Chem. 181, 1977 (2008).
  • LuSn2: 1:10, decant at 750 deg., Y. Zhu et al., Phys. Rev. B 103, 125109 (2021).
  • LnT2X2 (Ln = lanthanides, T = Co, Ru, Rh, Ir, X = Si, P): K. Kliemt et al., Cryst. Res. Technol. 55, 1900116 (2020).
  • Mn1.4PtSn: 3:1:40, decant at 450 deg., P. Vir et al., Chem. Mater. doi.org/10.1021/acs.chemmater.9b02013.
  • Pr2Co3Ge5: 3:2:7:50, decant at 815 deg., T. M. Kyrt et al., Sci. Adv. 10, eadl2818 (2024) .
  • RE7Co4InGe12 (RE = Dy, Ho, Yb): 3:2:15:3, decant at 350 deg., M. Chondroudi et al., Chem. Mater. 19, 4621 (2007).
  • beta-RECoSb3 (RE = La-Nd, Sm): W.-Z. Cai et al., Eur. J. Inorg. Chem. 2009, 230 (2009).
  • RECrGe3 (RE = La-Nd, Sm): 3:1:5:10, H. Bie et al., Chem. Mater 19, 4613 (2007).
  • RCr6Ge6 (R = Gd-Tm): 1.5:6:18:100, decant at 800 deg., X. Yang et al., Chinese Phys. B (2024).
  • RCu9Sn4 (R = La-Pr, Eu): 1:9:10-25, decant at 400-600 deg., Y. Hirose et al., J. Phys.: Conf. Ser. 592, 012034 (2015).
  • RFe2Ge2 (R = Y, Pr, Nd, Sm, Gd-Tm, Lu): M. A. Avila et al., JMMM 270, 51 (2004).
  • R6Ni6P17 (R = La, Ce): 1:1:8:30, 1:1:8:50, N. Takeda et al., J. Phys.: Conf. Ser. 391 012071 (2012).
  • RNiSi3 (R = Y, Gd-Tm, Lu): 1:1:3:45, decant at 500 deg., F. R. Arantes et al., PRMater 2, 044402 (2018).
  • RNiSi3 (R = Dy, Ho): 1:1:3:45, decant at 500 deg., D. Aristizabal-Giraldo et al., Physics Procedia 75, 545 (2015).
  • R3TiSb5 (R = La-Nd, Sm): 315:Sn = 0.25g:0.5g, decant at 950 deg.?, S. H. D. Moore et al., Chem. Mater. 14, 4867 (2002).
  • ScSn3: 1:9, decant at 400 deg., Y. Chen PRB 104, 165128 (2021).
  • SmCu2Ge2: 1:5:3:40, decant at 500 deg., T. D. Matsuda et al., JPSJ 81, SB037 (2012).
  • SmCrxGe2: [1:1:3] (0.3 g) : 0.5 g, decant at 500 deg. H. Bie et al., J. Solid State Chem. 182, 122 (2009).
  • YV6Sn6, GdV6Sn6: 1:6:20, decant at 780 deg., G. Pokharel et al., arxiv.org/abs/2109.07394 (2021).
  • YbCrSb3: Yb2Cr4Sb5(arc):Sn = 0.25 g:0.3 g, S. J. Crerar et al., Chem. Mater. 17, 2780 (2005).
  • YbNiSi3: 1:1:3:20, decant at 500 deg., M. A. Avila et al., PRB 70, 100409(R) (2004).
  • Yb(Rh,Ir)2Si2: Al2O3 crucible in Ta tube, heated under Ar (flow?) upto 1600 deg., C. Krellner et al., Phil. Mag. 92, 2508 (2012).
  • Zr3Mn3Sn4Ga: 1:2:6.3:0.7, decant at 600 deg., T. Clausse et al., Acta Cryst. B78, 817 (2022).

Antimony flux (Sb)

  • CaSb2: 1:3.75, decant at 592 deg., 
  • CeCuSb2: 1:2:21, decant at 700 deg., S. Datta et al., arXiv:2204.11078 (2022).
  • CePdSb3: CePdSb3(arc):Sb = 1:excess, A. Thamizhavel et al., JPSJ 74, 2617 (2005).
  • Ce3ZrSb5: 3:1:5, decant at 400 deg., K. Nakagawa, JPS Conf. Proc. 38, 011083 (2023).
  • DySbTe: 1:1:30, decant at 810 deg., F. Gao et al., PRB 105, 214434 (2022).
  • EuMg2Sb2: 1:4:16, decant 750 deg., S. Pakhira et al., arXiv2204.05261 (2022).
  • LaCrSb3, CeCrSb3: 4:3:13?, decant at 750 deg.?, D. D. Jackson et al., PRB 76, 064408 (2007).
  • LaTSb3 (T = V, Cr): 4:3:13, decant at 750 deg., D. D. Jackson et al., PRB 65, 014421 (2001).
  • LnFeSb3 (Ln = Pr-Tb): 1:2:20, decant at 640 deg., W. A. Phelan et al., Dalton Trans. 39, 6403 (2010).
  • GdCrSb3: 4:3:13?, decant at 750 deg.?, D. D. Jackson et al., J. Alloy Compd. 377, 243 (2004).
  • RCrSb3 (R = La, Pr, Sm, Gd): 4:3:13?, decant at 750 deg.?, D. D. Jackson et al., PRB 73, 024421 (2006).
  • RVSb3 (R = La-Nd, Sm, Gd-Dy): 8:8:84, decant at 780 deg. (R = La-Nd, Sm) and 850 deg. (R = Gd-Dy), A. S. Sefat et al., JMMM 320, 120 (2008).
  • SrMnSb2: 1:1:4, Y. Liu et al., PRB 99, 054435 (2019).
  • SmTSb3 (T = V, Cr): 4:3:13?, decant at 750 deg.?, D. D. Jackson et al., JMMM 256, 106 (2003).

Tellurium flux (Te)

  • Cr5Te8: 0.06:0.94, decant at 500 deg.?(not explicit), Y. Liu et al., PRB 96, 134410 (2017).
  • Cr5Te8: 15:85, decant at 530 deg., X.-H. Luo et al., JMMM 445, 37 (2018).
  • EuBiTe3: 1:3:13, decant at 470 deg., W. Shon et al., PRB 100, 024433 (2019).
  • EuTe2: 1:10, decant at 450 deg., H. Yang et al., PRB 104, 214419 (2021).
  • GdTe3: 3:97, decant at 550 deg., S. Lei et al., arXiv:1903.03111.
  • NiTe2: 1:15, decant at 500 deg., Q. Liu et al., arXiv:1901.01749.
  • TaNiTe5: 1:1:12, decant at 550 deg., Z. Hao et al., PRB 104, 115158 (2021).
  • TaPtTe5: 1:1:10, A. Mar et al., J. Solid State Chem. 92, 352 (1991).
  • TaTe4: 1:19, decant at 900 deg., X. Luo et al., Appl. Phys. Lett. 110, 092401 (2017).

Lead flux (Pb)

  • AE2Cu3As3 (AE = Sr, Eu): 3:2:5:25, decant at 500 deg., R. Zhang et al., Eur. J. Inorg. Chem. 3774 (2016).
  • AE3Ga2Pn4 (AE = Ca, Sr, Eu; Pn = P, As): 3:2:4:20, decant at 500 deg.?, H. He et al., J. Solid State Chem. 188, 59 (2012).
  • AE5In2As6 (AE = Sr, Eu): 3:2:4:20/5:2:6:20, decant at 500 deg., A. B. Childs et al., J. Solid State Chem. 278 120889 (2019).
  • AE3Ti8Bi10 (AE = Sr, Ba, Eu): 3:8:10:50, decant at 550 deg., A. Ovchinnikov et al., Inorg. Chem. 58, 2034 (2019).
  • BaAgBi: 1:1:1:15, decant at 400 deg., S. Xu et al., J. Cryst. Growth 531, 125304 (2020).
  • Ba2Cd2(As,Sb)3: 2:2:3:20, decant at 500 deg., B. Saparov et al., Dalton Trans. 39, 1063 (2010).
  • Ba3In2As4: 3:2:4:23, decant at 500 deg., A. B. Childs et al., J. Solid State Chem. 278 120889 (2019).
  • BaPt3P2: 2:7:3:20, decant at 550 deg.,  A. Yu et al., Inorg. Chem. doi.org/10.1021/acs.inorgchem.2c00747 (2022).
  • alpha-, beta-CaZnGe: 1:1:1:15, 2:1:1:15, decant at 550 deg., M. Zhu et al., J. Alloys Comp. 774, 502 (2019).
  • Ca1-xEuxCd2Sb2 (x = 0.3-0.9): 1-x:x:2:2:10, decant at 500 deg., A. Ovchinnikov et al., Materials 11, 2146 (2018).
  • Ca1-xRExAg1-ySb (RE = Ce, Pr, Nd, Sm): 1:1:1:1:10, decant at 600 deg., J. Wang, et al., JACS 135, 11840 (2013).
  • Ca3−xYbxAlSb3 (0 < x < 0.81): 2.5:0.5:1:3:30, decant at 500 deg., Y. Hong et al., Inorg. Chem. 2023 (doi.org/10.1021/acs.inorgchem.3c00615).
  • Ce3Bi4Ni3: 3:4:3.2:10, decant at 500 deg., D. M. Kirshbaum et al., PRR 6, 023242 (2024).
  • CePdSi3: D. Ueta et al., JPSJ 90, 114702 (2021).
  • CePtGe2: no description, T. Nakano et al., PRB 100, 035107 (2019).
  • CeRu4Sn6: 1:4:6:80, decant at 650 deg., F.-Y. Wu et al., arXiv:2305.00376 (2023).
  • CrAuTe4: 1:15:34, decant at 500 deg., Phys. Rev. B 94, 184413 (2016). 
  • ErGa2, HoGa2: 1:2:60, decant at 400 deg., R. D. dos Reis et al., J. Alloys Compd. 582, 461 (2014).
  • EuPtP1-xAsx: 4:3:3-3x:3x:40, decant at 750 deg., M. Sugishima et al., J. Kor. Phys. Soc. 62, 2019 (2013).
  • Eu11Z6Sb12 (Z = Zn, Cd): 11:6:12:580, decant 550 deg., B. Saparov et al., J. Solid State Chem. 181, 2690 (2008).
  • EuZn2Ge2: 1:2:2:10, decant at 400 deg., M. Kosaka et al., J. Phys. Soc. Jpn. 89, 054704 (2020).
  • GdPtPb: 1:1:18, decant at 600 deg., S. Manni et al., PRB 96, 054435 (2017).
  • Lix-2Mn4+xGe5 (x = 1.2): 4:1:1:9, decant at 550 deg., 
  • Ln3Au3Bi4 (Ln = La-Nd, Sm, Gd): 3:3:4:20, decant at 400 deg., E. M. Seibel et al., Inorg. Chem. 55, 3583 (2016).
  • α-Mn: 2:98, decant at 320 deg., T. Sato et al., JPS Conf. Proc. 30, 011030 (2020).
  • PtPb4: 13:87, 11:89, 9:91, decant at 310 deg., K. Lee et al., Phys. Rev. B 103, 085125 (2021).
  • RELi3Sb2 (RE = Ce-Nd, Sm, Gd-Ho): RELi3Sb2 : Pb = 500 mg : 2 g, M. C. Schafer et al., J. Solid State Chem. 210, 89 (2014).
  • Sr5Pt12P9: 2(5%mass exc.):7:3:20, decant at 550 deg., A. Yu et al., Inorg. Chem. doi.org/10.1021/acs.inorgchem.2c00747 (2022).
  • Yb2CdSb2: 2:1:2:10, heat up to 960 deg and decant at 500 deg., S.-q. Xia et al., JACS 129, 4049 (2007).
  • Yb2Pt2Pb: 5:4:40, decant at 450 deg., M. S. Kim et al., PRB 77, 144425 (2008).

Bismuth flux (Bi)

  • BaMn2Bi2: 1:2:5, decant at 500 deg., T. Ogasawara et al., arXiv:2010.00807 (2020).
  • CaAgP: 1.1:1:1:X, decant at 400 deg., Y. Okamoto et al., arXiv:2008.06188 (2020).
  • CaMnBi2: 1:1:8, decant at 400 deg., J. B. He et al., Appl. Phys. Lett. 100, 112405 (2012).
  • CaMn2Bi2: 1:2:10, decant at 400 deg., Q. D. Gibson et al., PRB 91, 085128 (2015).
  • Ca3Pd4Bi8, Ca3Pt4Bi8: 3:4:12, decant at 450 deg., A. Ovchinnikov et al., Inorg. Chem. 61, 9756 (2022).
  • CeAuBi2: 1:1.5:20, decant at 550 deg., M. M. Piva et al., Phys. Rev. B 101, 214431 (2020).
  • CeAu2Bi, LaAu2Bi: 1:4:10, decant at 500 deg., M. M. Plva et al., Phys. Rev. Mater. 3, 071202(R) (2019).
  • Ce2CuGe6: 2:3:20:40, decant at 680 deg., J. Qi et al., J. Alloys Comp. 805, 1260 (2019).
  • CePtGe2: no description, T. Nakano et al., PRB 100, 035107 (2019).
  • CePtGe2: no quantitative description, decant at 650 deg., S. Kirita et al., JPSJ 72, 2338 (2003).
  • Ce2Rh3Ge5: 2:1:2:25, D. Voswinkel et al., Zeitsch. Natur. B 68, 301 (2014).
  • Ce2Rh3+deltaSb4: 2:3:4:40, decant at 500 deg., K. Cheng et al., arXiv:2305.08669 (2023).
  • Ce3ScBi5: 1:4:10, decant at 700 deg., Z. Xu et al., PRB 110, 165106 (2024).
  • Ce2TGe6 (T = Cu, Pd, Au): 2:1:6:30, H. Kotegawa et al., PRL 133, 106301 (2024).
  • DyNi5Ge3: no description, decant at 650 deg., H. Ge et al., arXiv:2303.08673 (2023).
  • ErBi: 1:19, decant at 500 deg., L.-Y. Fan et al., PRB 102, 104417 (2020).
  • EuAuAs: 1:1:1:10, decant at 600 deg., S. Malick et al., PRB 105, 045103 (2022).
  • EuAuBi: 1:1:10, decant at 400 deg., H. Takahashi et al., JPSJ 92, 013701 (2023).
  • EuAu2In4, EuAuIn4: 1:1:10, 1:2:16, decant at 350 deg., S. Sarkar et al., Cryst. Growth&Design 13, 4151 (2013).
  • EuAuSb: 1:1:1:9, decant at 600 deg., D. Ram et al., PRB 109, 155152 (2024).
  • EuCdBi2: 1:1:5, decant at 300 deg., Y. Liu et al., Crystals 13, 654 (2023).
  • EuCuAs: 1:1:1:9, decant at 700 deg., S. Roychowdhury et al., J. Am. Chem. Soc. doi.org/10.1021/jacs.3c04249 (2023).
  • Eu3In2As4: 3:15:4.2:15, decant at 800 deg., K. Jia et al., arXiv:2403.07637 (2024).
  • GdAuGe: 1:1:1:10, decant at 680 deg., D. Ram et al., PRB 108, 235107 (2023).
  • KMn6Bi5: 1:2:8, decant at 430 deg., J.-K. Bao et al., JACS 140, 4391 (2018).
  • LaCoGe3, CeCoGe3: RCoGe3(arc):Bi = 1:appropriate, decant at 650 deg., A. Thamizhavel et al., JPSJ 74, 1858 (2005).
  • LaCo2As2: 1:2:2:30, C. M. Thompson et al., Chem. Commun. 47, 5563 (2011).
  • La3MgBi5: 1:3:6.5, decant at 650 deg., Z.-K. Yi et al., Adv. Mater. 36, 2400166 (2024).
  • La3MgBi5: 1:4:6, decant at 650 deg., X. Han et al., PRB 108, 075157 (2023).
  • La3MnBi5: 1:6:9, decant at 700 deg., C. Zhang et al., PRM 8, 034402 (2024).
  • LaTGe3 (T = Fe, Co, Rh, Ir), PrCoGe3: no quantitative description, T. Kawai et al., JPSJ 77, 064717 (2008).
  • LiBi: 1:2 in Nb crucible, decant at 270 deg., K. Górnicka et al., Chem. Mater. acs.chemmater.0c00179 (2020).
  • Ln3HfBi5 (Ln = Pr, Nd, Sm): 3:1:2, decant at 500 deg., Y.-Y. Wang et al., PRB 110, 134432 (2024).
  • Ln2-xTi6+xBi9 (Ln = Tb-Lu): no detail, decant at 600 deg., B. R. Ortiz et al., arXiv:2405.11378 (2024).
  • Ln3ZrBi5 (Ln = La, Sm): 3.15(La)/3(Sm):1:20, decant at 700 deg., J. F. Khoury et al., Adv. Mater. 36, 2404553 (2024).
  • MgNi2Bi4: 1:2:10, decant at 350 deg., M. B. Hertz et al., Inorg. Chem. 59, 3452 (2020).
  • MRPn (M = Ca, Sr, Ba; R = Ag, Au; Pn = As, Bi): 1:1:1:9 etc..., decant at 400 deg., S. Xu et al., J. Cryst. Growth 531, 125304 (2020).
  • Pr3MgBi5: 1:6:9, decant at 720 deg., X. Han et al., PRMater. 7, 124406 (2023).
  • RAu2Ge2 (R = La, Ce, Pr): 1:2:2:95, D. A. Joshi et al., JMMM322, 3363 (2010).
  • RBi2 (R = La, Ce): (Ce) 9:91, decant at 600 deg., (La) 8:92, decant at 350 deg., L. Xiang et al., Phys. Rev. Mater. 3, 095006 (2019).
  • R[Ge1-xBix]2 (R = La-Sm, Gd-Lu): 1:2:8, decant at 600 deg., J. Zhang et al., J. Solid State Chem. 196, 586 (2012).
  • R2TGe6 (R = Ce, Pr, T = Cu, Pd): 2:1:6:30, T. Yaguchi et al., JPS Conf. Proc. 30, 011111 (2020).
  • R2PdGe6 (R = Pr, Gd and Tb): 2:1:6:50, decant at 660 deg., L. Zhang et al., J. Mater. Sci. Tech. 35, 764 (2019).
  • SmMnBi2: 1:1:10, decant at 500 deg., K. Tang et al., Commun. Mater. 5, 89 (2024).
  • Sm3ZrBi5: 3:1:20, decant at 700 deg., J. F. Khoury et al., JACS 144, 9785 (2022).
  • SrAgBi: 1:1:4, decant 400 deg., M. K. Hooda et al., PRB 106, 045107 (2022).
  • SrNi0.17Bi2: 1:1:3, decant at 500 deg., A. Ovchinnikov et al., Inorg. Chem. 59, 3459 (2020).
  • TbTi3Bi4: 2:3:20, decant at 400 deg., B. R. Ortiz et al., arXiv:2405.11378 (2024).
  • TbTi3Bi4, LaTi3Bi4, 1:1:20, decant at 500 deg. (long anneal), K. Guo et al., PRB 110, 064416 (2024).
  • TmPdSb: 1:1:1:30, decant at 350 deg., S. Dan et al., Adv. Funct. Mater. 2402415 (2024).

Binary Eutectic and others

Al-Ge

  • CePtAl4Ge2: CePtGe3:Al:Ge = 1: 5.76:2.24, decant at 600 deg., S. Shin et al., J. Alloys Compounds 738, 550 (2018).
  • Ce2MAl7Ge4 (M = Co, Ir, Ni, Pd): CeMGe3:Al88Ge12 = 1:8, decant at 700 deg., N. J. Ghimire et al., Phys. Rev. B 93, 205141 (2016).
  • DyAl2Ge2: 1:30:20, decant at 600 deg., F. Gao et al., J. Solid State Chem. 328, 124347 (2023).
  • ErAl2Ge2: Er:Al:Ge = 1:30:20, decant at 580 deg., F. Gao et al., J. Magn. Magn. Mater. 533, 168014 (2021).
  • HoAl2Ge2: Ho:(Al-Ge eutectic) = 1:19, decant at 600 deg., Md. Matin et al., AIP Adv. 8, 055709 (2018).
  • HoAl2Ge2: Ho:Al:Ge = 1:30:20, decant at 600 deg., F. Gao et al., PRB 106, 134426 (2022).
  • HoPdAl4Ge2: Ho:Pd:Al:Ge = 1:1:40:20, decant at 600 deg., F. Gao et al., PRB 109, 134407 (2024).
  • Ho2PdAl6Ge4: 2:1:60:30, decant at 630 deg., H. Wu et al., J. Alloys Compd. 998, 174975 (2024).
  • NdAuAl4Ge2: no description, decant at 600 deg., M. Cong et al., PRMater. 7, 024423 (2023).
  • Pr2PdAl7Ge4: 2:1:40:60, decant at 600 deg., F. Gao et al., Phys. Rev. B 107, 214435 (2023).

Ag-Ge

  • RAgGe (R = Tb-Lu): R:(Ag0.75Ge0.25)=x:1-x; x = 0.06-0.14, decant at 850-825 deg. or 750 deg.(Yb), E. Morosan et al., JMMM 277, 298 (2004).
  • RAg2Ge2 (R = Pr, Nd, and Sm): 1:16.25:6.75, decant at 750 deg., D. A. Joshi et al., Physica B 404, 2988 (2009).
  • TmAgGe: 9:68:23, decant at850 deg., Phys. Rev. B 107, 224419 (2023).

Au-Si/Ge

  • CeAu4Si2: using Au:Si = 81:19 eutectic flux, H. Nakashima et al., J. Alloys Comp. 424, 7 (2006), decant at 780 deg., A. S. Sefat et al., J. Solid State Chem. 181, 282 (2008).
  • RAuGe (R = Y, Gd-Tm, Yb, Lu): 1:2:2 (Y, Tb-Tm, Yb, Lu), 1:3:3 (Gd), decant at 800 deg., T. Kurumaji et al., arXiv:2301.02794 (2023).

Cu-As/Sb

  • CaCu4As2: 1:7.5:6.5, decant at 675 deg., S. Sasmal et al., Phys. Rev. Research 4, L012011 (2022).
  • GdCuAs2: Gd:(Cu0.5As0.5) = 4:96, decant at 850 deg., A. Balodhi et al., PRMater. 108, 224425 (2023).
  • RCuAs2 (R = Yb, Y): excess Cu and As, no further description, D. Evans et al., PRB 105, 085105 (2022).
  • CaCuSb: 1:4.5:7.5, decant at 630 deg., S. Sasmal et al., arXiv:2111.04996 (2021).

Cu-Ge

  • RCu2Ge2 (R = La-Pr, Sm): R:(Cu63Ge37) = 1:19, H. Mendpara et al., JMMM 377, 325 (2015).

Cu-In

  • YbInCu4: InCu flux, decant at 800 deg., J. L. Sarrao et al., PRB 54, 12207 (1996).

R-TM

  • CeCoSi: 3:1:0.2, H. Tanida et al., JPSJ 88, 054716 (2019).
  • Ce5CoGa2: 9:3:1, decant at 550 deg., D. Su et al., 110, 144432 (2024).
  • EuZnGe/BaZnGe: 2:2:1, decant at 750 deg., T. Kurumaji et al., arXiv:2208.02385 (2022).
  • La5AgPb3: 6:6:1, decant at 930 deg., 
  • La5Co2Ge3: 45:45:10, decant 800 deg., S. M. Saunders et al., arXiv:2002.11050, Phys. Rev. B 101, 214405 (2020).
  • La4Co4X (X = Pb, Bi, Sb): 45:45:10(Pb), 51:46:3(Bi), 43:53:4(Sb), decant at 775 deg., T. J. Slade et al., PRM 8, 064401 (2024).
  • La15(FeC6)4H: La/Ni(88:12 wt%, 1.5 g)+Fe(1 mmol)+C14H10(anthracene, 0.2 mmol), decant at 600 deg., T. O. Engstrand et al., Inorg. Chem. 59, 11651 (2020).
  • La2Ni2In: LaNi:In = 6:1, decant at 725 deg., J. Maiwald et al., arXiv:2008.06104 (2020).
  • Nd5Pb3: Nd:Co:Pb=7:2:1, decant at 850 deg., J.-Q. Yan et al., J. Phys.: Condens. Mater. 30, 135801 (2018).
  • R2Cu2In (R = Gd-Tm, Lu): 0.5(1-x):0.5(1-x):x, 0.05 < x < 0.15, melt in Ta crucible, cooled from 1190 deg., I. R. Fisher et al., JMMM 202, 1 (1999).
  • Y2Co3: 51.5:48.5, decant at 825 deg.?, Y. Shi et al., arXiv:2201.11778 (2022).

Na-X

  • NaAlGe: Na:Al:Ge:Ga = 3:1:1:0.5, Z. Chen et al., arXiv:2206.06310 (2021).
  • NaAlSi: Na:Al:Si:Ga = 3:1:1:0.5 (Na-Ga flux), BN-crucible in SUS container, T. Yamada et al., JPSJ 90, 034710 (2021).
  • Na8Si46: Na:Si:Sn = 6:2:1, in BN crucible sealed in SUS316, H. Morito et al., Cryst. Growth Des. 18, 351 (2018).
  • NaTmTe2: NaTmTe2:Na2Te3 = 1:10, decant at 650 deg., S. Zheng et al., PRB 109, 075159 (2024).

Others

  • AMg2Bi2 (A = Ca, Yb, and Eu): 1:4:6, decant at 650 deg., A. F. May et al., Inorg. Chem. 50, 11127 (2011).
  • CeCd0.7Sb2: Cd/Bi flux, P. F. S. Rosa et al., PRB 92, 134421 (2015).
  • Ce2Pn (Pn = Sb, Bi): 10:1, decant at 900 deg., F. Wu et al., PRB 99, 064419 (2019).
  • Ce4Pt12Sn25: PtSn4 flux, decant at 650 deg., K.-A. Lorenzer et al., J. Phys.: Conf. Ser. 391, 012036 (2012).
  • Ce2Zn6Ge3: Ce:Zn:Ge:In = 0.33:4.8:0.67:3.6, (Ce0.33Ge0.67):(In0.6Zn0.4) = 1:12, A. Grytsiv et al., J. Phys.: Condens. Matter 15, 3053 (2003).
  • CsMn4As3: Cs:MnAs = 1:4, in Ta tube, dacant at 1110 deg., A. Pandey et al., arXiv:1904.04598.
  • EuGa2Sb2: 5:11:15, decant at 650 deg., T. Berry et al., arXiv:2108.05961 (2021).
  • EuPd2Sb2: 1:5:5, decant at 850 deg., S. Das et al., PRB 81, 054425 (2010).
  • EuZn2Sb2: 1:5:5, decant at 800 deg., M. X. Sprague et al., PRB 110, 045130 (2024).
  • KCo2As2: K:CoAs = 3:2, D. J. Campbell et al., PRMater 6, 045003 (2022). 
  • LiFeAs: 3:2:3, grown in Al2O3 crucible sealed in Nb crucible, I. Morozov et al., Cryst. Growth & Design 10, 4428 (2010).
  • Li2Sr[MnN]2: Li:Sr2N:Mn:NaN3 = 340:10:34:1, 127 deg.?, F. Hirschberger et al., arXiv:2103.00952 (2021).
  • LaNiGa2: 0.5(1-x):0.5(1-x):x (x = 32-36%), decant at 800 deg., J. R. Badger et al., Commun. Phys. 5, 22 (2022).
  • MnBi2Te4: 1:10:16 for MnTe:Bi2Te3=1:5 (typo?), decant at temperature above 585 deg.,  J.-Q. Yan et al., arXiv:1902.1011.
  • Pt2Sn2Zn3: 1:4:2, R. Lux et al., Z. Naturforsch. 61b, 862 (2006).
  • RCd1-dSb2 (R = La-Nd): 1:10.5:11.5, decant at 550 deg., V. Sharma et al., PRB 108, 214403 (2023).
  • RPd2P2 (R = Y, La-Nd, Sm-Ho, Yb): R:Pd:P=5:60:35(Y-Eu), R:Pd:P=10:54:36(Gd-Yb), decant at 930 deg., G. Drachuck et al., JMMM 417, 420 (2016).
  • SmMg2Pn2 (Pn = Sb, Bi): 1:5:25, decant at 700 deg., D. Ramirez et al., J. Solid State Chem. 231, 217 (2015).
  • UBiTe: 2:9:9, decant at 600 deg., Q. Xu et al., arXiv:2405.12471 (2024).